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The objective of this chapter is to introduce the topic of damping in the context of both its modeling and 

its effects in phononic crystals and acoustic metamaterials. First, we provide a brief discussion on the 

modeling of damping in structural dynamic systems in general with a focus on viscous and viscoelastic 

types of damping (Section 6.2), and follow with a non-exhaustive literature review of prior work that 

examined periodic phononic materials with damping (Section 6.3). In Section 6.4, we consider damped 

1D diatomic phononic crystals and acoustic metamaterials as example problems (keeping our attention 

on 1D systems for ease of exposition as in previous chapters). We introduce the generalized form of 

Bloch theory, which is needed to account for both temporal and spatial attenuation of the elastic waves 

resulting from the presence of damping. We also describe the transformation of the governing 

equations of motion to a state-space representation to facilitate the treatment of the damping term 

that arises in the emerging eigenvalue problem. Finally, the effects of dissipation (based on the two 

types of damping models considered) on the frequency and damping ratio band structures are 

demonstrated by solving the equations developed for a particular choice of material parameters.      
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6.1 Introduction  

   Damping is an innate property of materials and structures. Its consideration in the study of wave 

propagation is important because of its association with energy dissipation.  We can concisely classify 

the sources of damping in phononic crystals and acoustic metamaterials into three categories, 

depending on the type and configuration of the unit cell. These are: (1) bulk material-level dissipation 

stemming from deformation processes (e.g., dissipation due to friction between internal crystal planes 

that slip past each other during deformation); (2) dissipation arising from the presence of interfaces or 

joints between different components (e.g., lattice structures consisting of interconnected beam 

elements [1]); and (3) dissipation associated with the presence of a fluid within the periodic structure or 

in contact with it. In general, the mechanical deformations that take place at the bulk material level, or 

similarly at interfaces or joints, involve microscopic processes that are not thermodynamically reversible 

[2]. These processes account for the dissipation of the oscillation energy in a manner that fundamentally 

alters the macroscopic dynamical characteristics including the shape of the frequency band structure. 

Similar yet qualitatively different effects occur due to viscous dissipation in the presence of a fluid. 

While the representation of the inertia and elastic properties of a vibrating structure is adequately 

accounted for by the usual “mass” and “stiffness” matrices, finding an appropriate damping model to 

describe observed experimental behavior can be a daunting task. This is primarily due to the difficulty in 

identifying which state variables the damping forces depend on and in formulating the best functional 

representation once a set of state variables is determined [3,4].    

 

6.2 Modeling of material damping 

Due to the diversity and complexity of dissipative mechanisms, the development of a universal 

damping model stands as a major challenge. A rather simple model proposed by Rayleigh [5] is the 

viscous damping model in which the instantaneous generalized velocities,   , are the only relevant state 

variables in the calculation of the damping force vector  d [4]. Using C to denote the damping matrix, 

this relationship is given by  
 

 d            (1) 
 

While this description may be suitable when accounting for dissipation associated with the presence of a 

standard viscous medium (e.g., a Newtonian fluid), a physically realistic model of material damping will 

generally depend on a wider assortment of state variables. Such a model would represent nonviscous 

damping, of which viscoelastic damping is the most common type. In treating viscoelasticity, it is 

suitable to use Boltzmann's hereditary theory whereby the damping force depends upon the past 

history of motion via a convolution integral over a kernel function     : 
 

 d                   
 

 

  (2) 

 

The kernel function      may take several forms, while recognizing that               recovers 

the familiar viscous damping model [4]. Fundamentally, any form is valid if it guarantees a positive rate 

of energy dissipation. Thus there are numerous possibilities. In Fig. 1, the Maxwell model for viscoelastic 

damping is illustrated; it consists of a linear spring and a viscous dashpot in a series configuration. 
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Figure 1: Maxwell model 

 

The spring accounts for the fraction of mechanical energy that is stored during loading, while the viscous 

dashpot accounts for the remainder that is lost (not stored) from the system.  The dashpot also adds a 

time dependence to the model as the rate of deformation becomes a factor.  In this arrangement, the 

spring and dashpot experience the same axial force,         . In addition, the total displacement 

has contributions from both elements, that is,        , where the subscripts   and   denote the 

spring and dashpot, respectively. Differentiating   with respect to time gives           , which, by 

recalling the aforementioned equality of force within each element can be written in the following form: 
 

   
  

 
 

 

 
  (3) 

 

Assuming an initial displacement             we can integrate equation (3) with respect to time to 

obtain the displacement function,     . Corresponding to an elongation            where      is the 

unit step-function, we obtain a relaxation response function,            Based on the Maxwell model 

of Fig. 1, the kernel function is [6]: 
 

         
 
         

        , (4) 
 

in which the constants      (called relaxation parameters) may be determined from experiment. If the 

spring constant     in the Maxwell model, then elasticity, the mechanism of storing energy, is lost, 

and only the dissipative viscous mechanism remains. This is immediately apparent in equation (3) where 

       thus leading to the omission of the force-displacement relationship     . 

 

6.3 Elastic wave propagation in damped periodic media 

There are several studies in the literature that consider the treatment of damping in the context of 

periodic phononic materials. Many of these focus on simulating finite periodic structures (e.g., Refs. [7-

11]) which is different from carrying out a unit cell analysis. The latter approach has the advantage that 

it allows us to elucidate the broad effects of damping on the band structure characteristics. It is, 

therefore, more comprehensive because it provides information that can be relevant to a range of finite 

structure simulation scenarios.  

In unit cell analysis, the dynamics of a periodic material, e.g., atomic-scale crystalline materials, 

phononic (or photonic) crystals, periodic acoustic (or electromagnetic) metamaterials, etc., is fully 

characterized by the application of Bloch theory [12] on a single representative unit cell. As discussed in 

earlier chapters, this theory states that the wave field in a periodic medium is also periodic, except that 

its periodicity is determined by the frequency versus wavevector dispersion relation. The form of the 

displacement response in a non-dissipative phononic material following Bloch theory is given by   
 

                          , (5) 
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where              is the displacement field,    is the displacement Bloch function,           is 

the position vector,              is the wavevector,      , and  and t denote temporal 

frequency and time, respectively. 

Among the earlier studies that adopted a unit cell approach is the paper by Mead [13] which 

presented 1D discrete mass-spring-dashpot models and solved for the dispersion under structural 

damping (i.e., damping exhibiting velocity-independent forces). Similarly, Mikherjee and Lee [14], 

Castanier and Pierre [10], Zhang et al. [15] and Merheb et al. [16] provided dispersion relations using a 

complex elastic modulus (or a convolution integral expression in the case of Ref. [16]), and Langley [17] 

presented a corresponding analysis using a complex inertial term to account for the damping. In these 

studies, damping has therefore been incorporated in either the stiffness or mass matrix in the governing 

equations. Representing damping in the form of viscous or viscoelastic forces (as discussed in Section 

6.2), on the other hand, is more realistic, but requires the incorporation of an additional state variable – 

velocity – in the governing equations of motion. Naturally this leads to an eigenvalue problem with a 

nontraditional format. Several studies considered this problem for different types of configurations (i.e., 

concerning the geometry, boundary conditions and constitutive material behavior), for example, Refs. 

[18,19].  

A critical limitation to using equation (5) is that it assumes that a spatially propagating wave does not 

attenuate in time [20,21]. The allowance of a temporal loss factor was adopted by Mikherjee and Lee 

[14] in their investigation of a damped periodic composite (although limited to structural damping). In 

recent publications [22-24], the possibility of temporal attenuation has been incorporated in the Bloch 

formulation for viscous damping and it was shown that such treatment is consistent with results 

emanating from a free vibration analysis of corresponding finite periodic structures (whose theory of 

damping is well established [4]). It was observed that the band gaps in the damped unit cell dispersion 

match with the damped natural frequency gaps in the finite periodic structures only when the temporal 

component of Bloch theory is generalized to include a complex root λ, that is, 
 

                                                                                      (6) 
 

Here it should be noted that for the undamped case,      and equation (5) is recovered. While this 

form was successfully applied in Refs. [22-24], the models considered were limited to simple Kelvin-

Voigt viscous damping models. In the next section, we present the formulations for analyzing damped 

one-dimensional diatomic phononic crystals and acoustic metamaterials on the basis of generalized 

Bloch theory, and for both viscous and viscoelastic damping as described in Section 6.2. 

 

6.4 Damped one-dimensional diatomic phononic crystals and acoustic metamaterials  

By considering lumped masses, springs, and damping elements, in this section we construct a simple 

ID model of a damped diatomic phononic crystal (represented by a “mass-and-mass” configuration as 

shown in Fig. 2a) and similarly a simple ID model of a damped diatomic acoustic metamaterial 

(represented by a “mass-in-mass” configuration as shown in Fig. 2b). 
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Figure 2: Lumped parameter unit cell model of (a) phononic crystal (mass-and-mass), and  

(b) acoustic metamaterial (mass-in-mass) 

 

Considering unit cell periodicity, the set of homogeneous equations describing the motion of each mass 

in the phononic crystal model is obtained as follows [23]: 
 

     
 
           

 
      

 
      

   
          

 
     

 
     

   
    (7) 

 

     
 
           

 
      

 
      

   
          

 
     

 
     

   
    (8) 

 

where   
 

 is the displacement of mass   in an arbitrary  th unit cell. In general, a unit cell and its 

neighbors may be identified by    , where          denote the present, previous, and subsequent 

unit cells, respectively. Similarly for the acoustic metamaterial model, the equations of motion 

corresponding to the two masses are [24]: 
 

     
 
        

 
    

   
    

   
        

 
    

 
        

 
   

   
   

   
       

 
   

 
     (9) 

 

     
 
      

 
   

 
        

 
    

 
   . (10) 

 

6.4.1  Generalized Bloch theory and state-space transformation 

Generalized Bloch theory   

Writing the generalized Bloch theory of equation (6) in discrete format for the models shown in Fig. 2 

involves the product of the spatial function             
          and a temporal function, which 

takes the form of           . Here,     represent the complex wave amplitude, the variable   

denotes the lattice constant, and      for brevity. Thus the displacement function of mass   in the  

    )th unit cell is given by  
 

  
                             

            , (11) 
 

If we apply this form of the Bloch wave solution to equations (7) and (8) for the phononic crystal, we 

obtain a complex eigenvalue problem: 
 

                                  
                            

        (12a) 
 

                                  
                           

       (12b) 
 

which in matrix form is represented as 
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   (12c) 

 

Equation (12c) can be segregated in the following manner: 
 

                    . (13) 
 

Thus we identify the mass matrix  , damping matrix     , and stiffness matrix      as: 
 

   
   
   

  , (14) 

 

      
          

        

     
            

 , (15) 

 

      
          

        

     
            

 . (16) 

 

Applying equation (11) to equations (9) and (10) for the acoustic metamaterial yields the following 

complex eigenvalue problem:   
 

                                                                     (17a) 
 

                                    (17b) 
 

which in matrix form can be represented as 
 

 
                                               

                    

  
   

   

   
 
 
   (17c) 

 

Again, by segregating the coefficients, the damping and stiffness matrices can be identified and written 

as follows: 
 

      
      cos          

     
 , (18) 

 

      
      cos          

     
   (19) 

 

The acoustic metamaterial possesses the same mass matrix as the phononic crystal, given in equation 

(14).  Finally, if we define the set of material parameters    ,   , and    as follows: 
 

                              (20) 
 

then we may write the system matrices for each of the two models in a more convenient form.  Thus the 

system matrices for the phononic crystal become: 
 

     
     
  

        (21) 
 

        
                   

                  
        (22) 
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        (23) 

 

and for the acoustic metamaterial, 
  

        
    cos           

   
        (24) 

 

        
    cos           

   
       (25) 

  

It should be noted that in general the matrices    and    are unitary matrices. 

 

State-space transformation    

For general damping, viscous or nonviscous, the equations of motion cannot be uncoupled by using an 

alternate set of coordinates (as done, for example, in Ref. [22] which treated proportional Rayleigh 

damping using Bloch modal analysis). To determine the complex eigenvalues,   ,      , we develop a 

Bloch state-space formulation for each of the damping types. The formulation is based on a 

transformation of variables of the form: 
 

     
  

  
   (26) 

  

where the dot represents differentiation with respect to time. 

 

 6.4.1.1 Viscous damping 

For general viscous damping, the Block state-space formulation is as follows [23]: 
 

 
     

           
      

      

        
       (27) 

 

Now we write the solution as         .  It is at this point that we introduce, for convenience, two 

additional material parameters,           and        : 
 

  
   

        
    

    

         
        (28) 

 

Equation (28), which is a first order representation of the original second order eigenvalue problem, has 

two complex conjugate pairs of eigenvalues   and eigenvectors   .  Given their orthogonality with 

respect to the system matrices, the eigenvectors decouple the equations into four modal equations with 

complex roots    ,        4 appearing in complex conjugate pairs and thus effectively representing 

two single-degree of freedom systems.  Thus we can write: 
 

             
               

               (29) 

 

If we focus our attention on only the first eigenvalue in each complex conjugate pair, then we extract 

the damped natural frequency as: 
 

   
                          (30) 

 

and the corresponding damping ratio: 
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 bs       
.           (31) 

 

6.4.1.2 Viscoelastic damping 

In this section, we apply the Bloch state-space approach to the viscoelastic case by introducing a set of 

internal variables.  We develop the state-space matrices using an approach proposed by Wagner and 

Adhikari [25] for finite structural dynamics systems, and then extend the analysis to the unit cell 

problem. The approach is specific to the case in which the constants      in equation (4) are equal (i.e., 

       ). 

According to Ref. [25], we define an internal variable      as follows: 
 

                

 
       . (32) 

 

The Leibniz integral rule gives a formula for differentiation of a definite integral whose limits are 

functions of the differential variable: 
 

 

  
       

    

    

    
 

  
      

    

    

             
 

  
              

 

  
      (33) 

 

Applying this rule to equation (32), we obtain: 
 

                  
 

 

                              (34) 

 

We may rewrite equation (34) as: 
 

                  . (35) 
 

According to equations (2) and (4), the system of equations for a finite, viscoelastically damped system is  
 

                         
 

 

             (36) 

 

However, for our unit cell Bloch wave propagation problem, for which the damping and stiffness 

matrices are wavenumber-dependent and       , we get: 
 

                            
 

 

              (37) 

 

With equation (32), this becomes: 
 

                          (38) 
 

Next, we solve for   in equation (35) and substitute the result into equation (38): 
 

               
 

 
                 (39) 

 

At this point, incorporating equation (39) into a state-space matrix equation format will result in non-

square matrices. To produce square and block-symmetric state-space matrices, we formulate another 

equation.  Premultiplying equation (35) by       and dividing by    yields: 
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          (40) 

 

In first order state-space form, equations (39) and (40) become: 
 

 

    

          

 
     

   

 
     

 

       

      

     

          

   

 
     

     , (41) 

 

where           .  We assume the solution         , and subsequently develop the eigenvalue 

problem: 
 

 

 

 
 
 
 
    

         
 

 
     

  
 

 
     

 

        
 
 
 

   

     

          

  
 

 
     

 

 

       (42) 

 

Upon obtaining the eigenvalues    , now mathematically a set of six values,         , we can extract 

the two complex conjugate pair values (remaining two roots are spurious) that physically represent the 

modes of damped wave propagation, exactly as defined in equations (30) and (31).   

As implied in the above formulation, and supported by the definition of the Maxwell element (Fig. 1 

and equation (3)), in the limit    , the viscous Bloch state-space formulation of equation (28) is 

recovered. That is, high values of   represent more viscous behavior (less dependence on the past 

history), while low values of   represent more viscoelastic behavior (more dependence on the past 

history). 

 

6.4.2 Damped Bragg scattering and local resonance 

For both the phononic crystal and the acoustic metamaterial models in Fig. 2, we generate dispersion 

curves using for demonstration a specific set of material parameters:     ,       ,     , and 

         rad   . The parameter   is varied to show the dependence on the damping intensity.  In 

Figs. 3-6, plots corresponding to the phononic crystal (mass-and-mass model) appear on the left while 

those pertaining to the acoustic metamaterial (mass-in-mass model) appear on the right. While these 

results are dependent on values chosen for the parameters   ,    and   , they provide some basic 

insight on the effects of damping on the behavior of phononic crystals and acoustic metamaterials. 

 

 6.4.2.1 Viscous damping 

Here we show the frequency (Fig. 3) and damping ratio (Fig. 4) band structures for the case of viscous 

damping, obtained by solving equation (28). We observe in Fig. 3 that as the damping intensity      is 

increased, the optical branch for both the phononic crystal and the acoustic metamaterial drops while 

the acoustic branch experiences little change – this in turn leads to a reduction in the size of the band 

gap. For the phononic crystal, the descent of the optical branch takes place at slightly faster rates at low 

wavenumbers compared to high wavenumbers; whereas for the acoustic metamaterial significantly 

higher drop rates take place at high wavenumbers compared to low wavenumbers. The damping ratio 

diagram in Fig. 4 follows a corresponding trend with an indication that the effect of damping is slightly 

more significant at low wavenumbers for the phononic crystal and noticeably more significant at high 
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wavenumbers for the acoustic metamaterial. We also observe that at low wavenumbers the damping 

ratio values for the phononic crystal exceed those of the acoustic metamaterial for a given damping 

intensity     , and vice versa at high wavenumbers. With regards to the damping ratios of the acoustic 

branch modes, these are higher for the phononic crystal compared to the acoustic metamaterial.  

 

 
 

Figure 3: Frequency band structure for viscous damping case:  

phononic crystal (left) and acoustic metamaterial (right) 

 

 
 

Figure 4: Damping ratio band structure for viscous damping case:  

phononic crystal (left) and acoustic metamaterial (right) 

 

6.4.2.2 Viscoelastic damping 

As noted in Section 6.4.1.2, when      viscoelastic behavior is better represented by "low"   and, in 

contrast, viscous behavior is better represented by "high"  .  What qualifies as a low/high value of   

depends on the other parameters in the damping matrix     .  If   is such that  
 
       compared to 
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     (i.e.,       

 
         ), then dominantly viscous behavior can be expected.  For our model, we 

find       reflects viscous behavior well.  To represent the viscoelastic behavior, we set       and 

show the solution of equation (42) in Figs. 5 and 6.  

 

 
 

Figure 5: Frequency band structure for viscoelastic damping case:  

phononic crystal (left) and acoustic metamaterial (right) 

 

 
 

Figure 6: Damping ratio band structure for viscoelastic damping case:  

phononic crystal (left) and acoustic metamaterial (right) 

 

Unlike the viscous damping case, we notice that in this model of viscoelastic damping, the optical 

dispersion branches for both the phononic crystal and the acoustic metamaterial rise with the damping 

intensity. Subsequently, this increases the size of the band gap – a desirable feature for many 

applications such as vibration isolation and frequency sensing. The sensitivity of the changes in the 

optical branches again seems to be highest in the acoustic metamaterial at high wavenumbers. The 

damping ratio band structures shown in Fig. 6 indicate less sensitivity overall to damping intensity 
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compared to the viscous damping case. This is because a portion of the energy associated with the 

viscoelastic forces is stored in the spring element (as discussed in Section 6.2) and not dissipated. 

We recall that both the phononic crystal and acoustic metamaterial models considered are based on 

the same ratios of mass, stiffness and damping (see Fig. 2 and equation 20). Yet, the effects of damping 

are different. This is a manifestation of the fundamental difference in the wave propagation mechanism 

of Bragg scattering (that takes place in phononic crystals) and that of local resonance (that takes place in 

acoustic metamaterials).  
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